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Chapter 7 
Methods to Evaluate the Seismic Stability of Structures 
 
7-1. Introduction 
 
Structures must be evaluated with respect to sliding and rotation to ensure that they remain 
stable during an earthquake. Sliding stability of CHS under earthquake loading is evaluated 
using the limit equilibrium method (seismic coefficient) and permanent sliding displacement 
approaches (EM 1110-2-6050). Rotational stability of CHS under earthquake loading is 
evaluated using the energy-based formulation and the limit equilibrium method (EM 1110-2-
6050). In addition to these methods, a new method based on rocking spectrum is introduced for 
assessment of rotational stability after a tipping of the structure has been indicated. All of these 
stability methods assume rigid structural behavior. This assumption is reasonable for most 
massive hydraulic structures, because the period of a sliding or rocking structure is much longer 
than the vibration period of the flexural response of the structure. However, the effects of 
structure flexibility on sliding and rotation could be important for more flexible and less massive 
structures and should be investigated. The structure flexibility can significantly affect the 
earthquake demands, which are used to determine whether or not sliding or rotation would take 
place. Sliding or rocking of a structure during an earthquake may not lead to failure of the 
structure.  For a sliding failure to occur, the sliding displacement of the structure must be of 
sufficient magnitude to impair lateral load carrying capacity or life safety protection (for example, 
uncontrolled release of water from a reservoir).  For a rotational stability failure to occur, the 
ground motion energy imparted to the structure after tipping occurs must be sufficient to cause 
rotational instability, or otherwise impair lateral load carrying capacity and life safety protection. 
Since bearing pressures can increase significantly as the resultant moves towards the edge of 
the base during a rotational response to earthquake ground motions, the load carrying capacity 
of the structure can be impaired due to a foundation bearing failure. 
 
7-2. Rigid Structure vs. Flexible Structure Behavior 
 
While a rigid structure will be subjected to a maximum acceleration equal to the peak ground 
acceleration (PGA) during earthquake ground shaking, a flexible structure will experience an 
average acceleration that depends on vibration period of the structure and on characteristics of 
the earthquake ground motion.  This is illustrated by the acceleration response spectrum in 
Figure 7-1.  The figure represents the typical acceleration responses of single-degree-of-
freedom (SDOF) systems on a rock 
or firm soil site.  Although most 
structures are not SDOF, a similar 
relationship can be assumed for the 
first-mode acceleration response of 
multi-degree of vibration systems. 
From Figure 7-1 it can be seen that 
only very rigid structures, with 
vibration period close to zero 
seconds, can be expected to 
experience peak accelerations 
equal to the PGA. For structures 
with periods between 0.02 seconds 
and 1 second (the typical range for 
most concrete hydraulic structures) 0.0
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Figure 7-1. Dynamic Amplification Effects 
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the average structure acceleration will be greater than the PGA, with Dynamic Amplification 
Factors (DAF) as high as two to three. 
 
7-3. Sliding Stability 
 

a. Seismic coefficient method.  In the limit equilibrium or seismic coefficient method, the 
sliding stability is expressed in terms of a prescribed factor of safety. A seismic coefficient, equal 
to 2/3 the peak ground acceleration divided by the acceleration of gravity (g), is used by the 
Corps to evaluate the potential for sliding. This coefficient when multiplied by the effective 
weight (structure weight + hydrodynamic added weight) provides the total lateral inertial force on 
the structure due to earthquake ground motions. The total lateral inertial force when added to 
static lateral forces, if any, provides the total driving force for the sliding stability analysis. The 
Maximum Design Earthquake (MDE) is considered an extreme load condition requiring a safety 
factor of 1.1 against sliding failure (Refer to EM 1110-2-2100 for stability requirements). A 
permanent sliding displacement analysis is required for structures that do not meet the required 
sliding factor of safety determined by the seismic coefficient method.  
 

b. Permanent sliding displacement approach 

(1) Upper bound estimate - rigid behavior.  Sliding of a structure on its base will not occur 
until the total driving force exceeds the resisting force, or in other words when the sliding factor 
of safety is less than one.  The total driving force can be due to static earth pressures, 
hydrostatic pressures, earthquake inertia forces, and earthquake induced hydrodynamic forces. 
Hydrodynamic forces are commonly determined by the Westergaard’s added hydrodynamic 
mass (EM 1110-2-6051). The total mass of the system is therefore represented by the sum of 
the structure mass plus the hydrodynamic added mass. The static component of the driving 
force can easily be determined.  The maximum inertia force for a rigid structure is a product of 
the total mass times the peak ground acceleration.  The peak ground acceleration that will 
initiate sliding (i.e. when the driving force equals the resisting force) is defined as the critical 
acceleration. If the critical acceleration is greater than the peak ground acceleration of the 
design earthquake then the structure will not slide.  Conversely, if the critical acceleration is less 
than the peak ground acceleration the structure will slide. An upper bound estimate of the 
permanent sliding displacement can be made using Newmark's rigid block analysis procedures 
(Newmark, 1965) or by methods developed by Richards and Elms (Richards and Elms, 1977).  
The Newmark procedure has been incorporated into the Corps program CSLIP.  Newmark 
developed rigid block analysis procedures for rigid structures that slide in one direction only 
(dams, retaining walls, etc.) and for structure, which have the potential to slide equally in both 
directions (intake towers, lock monoliths, etc.). Newmark's sliding block analysis is 
demonstrated for a concrete gravity dam in Chopra and Zhang (1991), and the results from the 
Newmark analysis are compared to those obtained from a response history analysis.  The 
potential for sliding, and the upper bound estimate of permanent sliding displacements can be 
reasonably determined using a Newmark-type sliding block analysis provided that the 
foundation sliding resistance is based on a best estimate (mean value) of the foundation shear 
strength, and that foundation shear strength parameters are adjusted for dynamic loading 
effects.  Although the permanent sliding displacement is to be based on a mean shear strength 
value, permanent-sliding displacements should also be calculated using upper and lower bound 
estimates of foundation shear strength parameters.  
 

(2) Upper bound estimate - flexible behavior.  An approximate method based on rigid block 
analysis procedures (Chopra and Zhang, 1991) has been developed to estimate upper bound 
permanent displacements for flexible behavior. The analysis is similar to that used in the rigid 
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block analysis except that the sliding potential and estimate of upper bound displacements are 
based on the average peak structure acceleration rather than the peak ground acceleration.  
The average peak structure acceleration will generally be larger than the peak ground 
acceleration (see Figure 7-1) and therefore the upper bound permanent sliding displacement 
will be larger for a flexible structure than it is for a rigid structure.  The average peak 
acceleration of the structure can be estimated by dividing the total first mode inertial force (base 
shear) obtained from a linear elastic response spectrum analysis by the total mass.  Procedures 
for estimating average peak structure accelerations for flexible structures are provided in 
Chopra and Zhang, 1991. 
 

c. Response history analysis procedures 
 

(1) Linear time-history analysis – instantaneous factor of safety.  The results of linear-elastic 
time-history analysis can be used to compute time-history or instantaneous sliding factor of 
safety along any desired sliding plane(s). The instantaneous factor of safety for the earthquake 
loading condition is obtained by combining the interface (i.e. sliding plane) force histories due to 
the earthquake loading with the interface forces due to the static usual loads plus the uplift. At 
each time step, the static and dynamic nodal forces are combined and then resolved into a 
resultant force having components normal and tangential to the sliding plane. The resisting 
forces are obtained from the normal component of the resultant force using the Mohr-Coulomb 
law, and the driving force is computed from vector summation of tangential components of the 
resultant force.  The time-history of factor of safety is then obtained from the ratio of the 
resisting to driving forces at each time step. Figure 7-2 is an example of instantaneous factors of 
safety. The time-history starts at value equal to static factor of safety and then oscillates as the 
structure responds to the earthquake ground shaking. Under earthquake excitation, the stability 
is maintained and sliding does not occur if the factor of safety is greater than 1. However, a 
factor of safety of less than one indicates a transient sliding, which if repeated numerous times, 
could lead to excessive permanent displacement that could undermine safety of the structure. 
For example, Figure 7-1 shows that the factor of safety repeatedly falls below one, an indication 
that sliding of the structure could be expected. The magnitude of sliding displacement and its 
impact on the stability of the structure need to be evaluated by performing a nonlinear sliding 
displacement analysis discussed next. 
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Figure 7-2. Time-history or instantaneous factors of safety 
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(2) Nonlinear time history analysis -- permanent sliding displacement. In nonlinear time-
history analysis, governing equations of motion for the sliding structure are derived with respect 
to time and solved using step-by-step procedures (Chopra and Zhang 1991, Chavez and 
Fenves, 1993).  A sliding structure is subjected to the ground acceleration plus the acceleration 
associated with the sliding displacement. If the sliding structure is assumed to be rigid, the 
governing equations involve dynamic equilibrium of inertia and static forces in the direction of 
sliding. Sliding is initiated when the acceleration reaches a critical or yield acceleration, i.e. a 
value at which the driving and resisting forces are equal; and the sliding ends when the sliding 
velocity becomes zero and the ground acceleration falls below the critical acceleration. If the 
sliding structure is flexible, two sets of governing equations will represent the sliding phase: 1) 
equations representing equilibrium of forces for the portion of the structure above the sliding 
plane, and 2) equations representing equilibrium for the entire sliding structure including all 
forces acting on the sliding plane. The structure’s total permanent sliding displacement is then 
obtained by step-by-step solution of these coupled sets of equations.  Alternatively, the 
nonlinear sliding behavior can be estimated using gap-friction elements along the sliding plane 
followed by a direct step-by-step integration of the equations of motion to obtain the total 
permanent sliding displacement. 
 
7-4. Rotational Stability  
 

a. General.  A structure will tip about one edge of its base when earthquake plus static 
overturning moment (Mo) exceed the structure restoring moment capacity (Mr), or when the 
resultant of all forces falls outside the base.  Depending on the magnitude of the peak ground 
acceleration, duration of main pulses, and slenderness of the structure, different rotational or 
rocking responses can be expected. As with sliding stability the inertia forces are likely to be 
larger for flexible structures than they are for rigid structures. Rotational or rocking responses to 
ground motions may include: 

(1) No tipping because Mo < Mr 

(2) Tipping or uplift because Mo > Mr, but no rocking due to insufficient ground motion 
energy  

(3) Rocking response (Mo > Mr) that will eventually stop due to the energy loss during 
impact  

(4) Rocking response that leads to rotational instability (extremely unlikely). 
 
The likelihood of tipping can be determined by the following simple tipping potential evaluation.  
Even if tipping occurs, it is unlikely that it would result in rotational instability for the massive 
concrete hydraulic structures (Paragraph 7-4d).  However, high bearing pressures can develop 
during tipping and rocking responses. A bearing failure evaluation is required to determine 
whether bearing pressures associated with the tipping and rocking responses could lead to 
foundation failure. Rocking spectrum and nonlinear time-history procedures are available to 
evaluate the potential for rotational instability (Paragraph 7-4d).  
 

b. Tipping Potential Evaluation.  Hydraulic structures subjected to large lateral forces 
produced by earthquakes may tip and start rocking when the resulting overturning moment 
becomes so large that the structure breaks contact with the ground. For a nearly rigid structure 
as shown in Figure 7-3, or for a flexible structure idealized as an equivalent single degree of 
freedom system, the tipping occurs when the overturning moment exceeds the resisting 
moment due to the weight of the structure.  Note that in both cases it is assumed that the 



  EM 1110-2-6053 
 1 May 2007 

7-5

structure is not bonded to the ground, but it may be keyed into the soil with no pulling 
resistance.  This condition is expressed by: 

 
Mo > Mr  

 m Sa h > m g b  or,  Sa > g (b/h)    (7-1)                          

where: 

 Mo = overturning moment 
Mr = resisting moment 

 Sa = spectral acceleration 
 g  =  gravitational acceleration 
 b = one-half width of the structure 
 h = distance from the base to the center of gravity 
 m = mass of the structure 
 
This expression can also be used for hydraulic structures, except that the moments due to 
hydrostatic and hydrodynamic forces should be included and that the added hydrodynamic 
mass of water be also considered in determination of the structure’s center of mass. 
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Figure 7-3. Rigid block and SDOF models for rigid and flexible structures 

 
 

c. Energy Based-Rotational Stability Analysis.  The structure will eventually overturn if the 
moment Mo>Mr is applied and sustained. However, under earthquake excitation large 
overturning moments occur for only a fraction of second in each cycle, with intermediate 
opportunities to unload. Although rocking occurs, the structure may not become unstable 
rotationally if the energy loss during impact results in reduction of the angular velocity when the 
rotation reverses. By comparing the earthquake average energy input with the required average 
energy for overturning the structure, Housner provided the following approximate relationship as 
a criterion for the overturning stability of a rocking structure (Housner 1963): 
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where:  
 

α = angle between the vertical and the line segment R as illustrated in Figure 7-2. 
 
r = distance from the center of gravity to the corner about which rotation occurs. 
 
Io = mass moment of inertia about that corner. 
 
Sv = spectral velocity of the earthquake ground motion. 
 

Based on the average energy formulation used, this equation is interpreted as stating that for a 
given spectral velocity Sv, a block having an angle α given by Equation 7-2 will have 
approximately a 50 percent probability of being overturned (Housner 1963).  For slender 
structures such as intake towers Equation 7-1 can be approximated by: 
 

 α =
S
gr
V         (7-3) 

 
By combining Equations 7-1 and 7-3 and using the relationships among the spectral 
acceleration, velocity, and displacement, R. E. Scholl (ATC-10-01, 1984) found that 
consideration of one spectral parameter alone as the earthquake demand is not sufficient for 
evaluating overturning and suggested the following relationships: 
 

 Sd = b   when  S g
b
hd =       (7-4) 

 
These equations show that when Sa is just sufficient to cause tipping, the structure will start 
rocking, but its displacement approximated by spectral displacement Sd must reach the value b 
before it can overturn.  These equations also demonstrate why larger structures such as 
buildings do not overturn during earthquakes, whereas smaller rigid blocks having the same 
aspect ratio are expected to overturn.  This is because, in general, Sd is never large enough to 
tip over a building, but it can approach one-half the base width (i.e. b) of smaller rigid blocks 
such as tombstones. A better and more accurate procedure for evaluation of rocking response 
is the use of rocking spectra and nonlinear time-history method described next. 
 

d. Time-history and rocking spectrum procedures 
 
(1) Time history and rocking spectra can be used to estimate the uplift or overturning of 

hydraulic structures that tend to undergo rocking motion (Makris and Konstantinidis, 2001). 
There are distinct differences between a SDOF oscillator and the rocking motion of a rigid block, 
as shown in Figure 7-4. As such, an equivalent SDOF oscillator and standard displacement and 
acceleration response spectra should not be used to estimate rocking motion of structures. For 
example, the restoring mechanism of the SDOF oscillator originates from the elasticity of the 
structure, while the restoring mechanism of the rocking block from gravity. The SDOF oscillator 

α =  S  
mr
gIv

o
       (7-2) 
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has a positive and finite stiffness, k, and energy is dissipated as the force-displacement curve 
forms closed loops. The rocking block, on the other hand, has infinite stiffness until the 
magnitude of the applied moment reaches the restoring moment, and once the block is rocking, 
its stiffness decreases and reaches zero when the of rotation of the block becomes equal to α 
(the block slenderness). The vibration frequency of a rigid block is not constant because it 
depends on the vibration amplitude (Housner 1963). The vibration frequency p = (3g/4R)1/2 is a 
measure of the dynamic characteristic of the block. It depends on the size of the block, R, and 
the gravitational acceleration, g. This indicates that rocking response cycles of larger block is 
longer than the corresponding rocking response-cycles of the smaller block.   

 
(2) Governing equations. The governing equations of rocking motion under horizontal 

ground acceleration are given by Yim et al. 1980, Makris and Roussos 2000, among others): 
 

( ) ( ) ( ) ( ) 0<−−−=−−+ θθαθαθ forRtumRgmtI go ,cossin &&&&  (7-5) 
 

( ) ( ) ( ) ( ) 0>−−=−+ θθαθαθ forRtumRgmtI go ,cossin &&&&  (7-6) 
 
which in its compact form can be expressed as: 
  

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−+−−= tt
g
u

ttpt g θθαθθαθ sgncossgnsin
&&&& 2   (7-7) 

 
where for rectangular blocks; 
 

α  = tan-1 (b/h)  

Io = (4/3) m R2 

P =(3g/4R)1/2 
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a) Single-degree-of-freedom Oscillator c) Free-standing rocking block  

 
 

  

 

 

b) SDOF force-displacement diagram d) Rocking block moment-rotation diagram 

Figure 7-4. Comparison of  a single-degree-of-freedom oscillator with a freestanding block in 
rocking motion (adopted from Makris and Konstantinidis, 2001) 

 
 

(3) Time-history solution. The solution of Equation 7-7 is obtained by step-by-step numerical 
procedures. The rocking response quantity of interest include the block rotation, θ, and its 
angular velocity, θ& . The resulting time-histories of θ and θ&  will indicate how many impacts the 
block will experience and whether or not it will overturn (i.e. θ becomes greater than α).   

 
(4) Rocking spectra. Same as the standard response spectra, one can generate rotational 

and angular velocity spectra (rocking spectra) as a function of the “period” T=2π/p for different 
values of slenderness (damping), α = tan-1 (b/h). This can be accomplished by solving Equation 
7-7 for the maximum rotation of similar blocks of different sizes subjected to a given earthquake 
acceleration time history. This was done for similar blocks with α = 15° subjected to Pacoima 
Dam motion recorded during the 1971 San Fernando earthquake. The resulting rocking 
spectrum and the input acceleration record are shown in Figure 7-5. In the rocking spectrum, as 
2π/p increases, the size of the block becomes larger. Larger values of the slenderness α 
correspond to larger amount of energy lost during impact. Figure 7-4 indicates that any block 
with slenderness α =15° that is small enough so that 2π/p<3.3 sec (or R<6.7 ft) will overturn 
when subjected to the Pacoima Dam record. Larger blocks with 2π/p>3.3 sec (or R>6.7 ft), will 
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uplift, but the maximum rotation is only a fraction of their slenderness. From this example, it 
should be obvious that rocking spectra provides a powerful and accurate tool for assessment of 
overturning potential of hydraulic structures.  New research and development in this area are 
necessary to develop computation tools needed to make such assessments. 
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Figure 7-5. Pacoima Dam motion recorded during the 1971 San Fernando earthquake (top) and 
rocking spectrum of similar blocks with α = 15° (bottom). 

 
7-5. Mandatory Requirements 
 

a. Performance requirements for stability shall be in accordance with EM 1110-2-2100, 
Stability Analysis of Concrete Structures. 

 
b. Seismic stability evaluation other than seismic coefficient method shall be in accordance 

with procedures discussed in this chapter. 
 
 


